TRICHOVERRITONE AND 16-HYDROXYRORIDIN L-2,

NEW TRICHOTHECENES FROM MYROTHECIUM RORIDUM

Bruce B. Jarvis^{*}, Vîvekananda M. Vrudhula and Gowsala Pavanasasivam Department of Chemistry University of Maryland College Park, MD 20742

Abstract: Trichoverritone (3), a C-35 trichothecene, and 16-hydroxyroridin L-2 (2) have been isolated from a liquid culture of Myrothecium roridum. The former congener, 3, the largest known trichothecene, also was shown to be produced by a pathogenic strain of M. roridum.

The trichothecene group of secondary fungal metabolites has generated a great deal of interest due to their wide spread occurrence in nature as well as their wide range of bioactivity. ¹ With respect to the latter, it is their role as mycotoxins ^{1d} and as anticancer agents agents ^{1C} that has generated the most interest in these sesquiterpene antibiotics.

Recently, a novel C-29 trichothecene, roridin L-2 (1), was isolated from a large scale liquid culture of Myrothecium roridum. strain CL-514.² Herein. we report the isolation and characterization of 16-hydroxroridin L-2 (2) and the largest heretofore isolated trichothecene, trichoverritone (3), a C-35 trichothecene, from this same culture. 2 Also, we report that M. roridum, strain 81-131, which is a pathogen on Aglaonema sp., 3 produces trichoverritone (3) and roridin L-2 (1) as well.

Roridin L-2 (1), R=H 16-Hydroxyroridin L-2 (2), R=OH

Trichoverritone (3)

Compounds 2 and 3 were isolated from the most polar fraction of a silica gel chromatography of an ethyl acetate extract of the fermentation beer of <u>M. roridum.</u>² This crude fraction (17.7 g) in methanol was treated with ferric gel ⁴ and the resulting organic fraction (5.3 g) was purified further by extensive silica gel chromatography, preparative TLC and reversed phase HPLC. By these methods were isoalted, in order of increasing polarity, trichoverritone (3, 60 mg) and 16-hydroxyroridin L-2 (2, 30 mg).

Trichoverritone was isolated as an oil: $\lambda_{max} 259 \text{ nm}$ (MeOH), log ε =4.57; $[\alpha]_D^{25}$ + 45.0 (C=0.2, CHCl₃); IR (neat) 3460, 1785, 1750, 1710, 1640, and 1600 cm⁻¹; MS (CI, methane gas reagent), m/e 643.3122 (M⁺ + H, calc for C₃₅H₄₆O₁₁ + H is 643.3118). Both the mass spectral and ¹³C NMR data (see Table I) make it evident that trichoverritone (3) is a C-35 compound. Furthermore, in the ¹H NMR spectrum of 3, the two proton doublet at δ 4.82 and the two proton triplet at δ 2.69 are two resonances characteristic of H-12' and H-4', respectively, in roridin L-2 type structures. However, unlike roridin L-2, 3 exhibits a proton resonance at δ 2.20 (3 H, d, J=1.2 Hz) characteristic of a vinyl methyl group in the side chain a found in roridins E (4a) and isoE (4b) and the trichoverrins (5). ⁵ These data make firm the structure assignment given.

Roridin E (4a) [6'(R), 13'(R)] Isororidin E (4b) [6'(S), 13'(S)]

Trichoverrin A (5a) [13'(S)] Trichoverrin B (5b) [13'(R)]

16-Hydroxyroridin L-2 was isolated as an oil: λ_{max} 261 nm, MeOH, log ε 3.90; $[\alpha]_0^{25}$ + 58.4 (C= 0.19, CHCl₃); IR (neat) 3440, 1785, 1750, 1710, 1640, 1600 cm⁻¹; MS (CI, methane gas reagent), m/e 547.2532 (M⁺ + H, calc for C₂9H₃₈O₁₀ + H is 547.2543). In addition to the twenty-nine carbon atoms evident in the ¹³C spectrum (see Table 1), the ¹H NMR spectrum exhibits the two proton AB resonance (dd, J_{AB}=16 Hz and J_{2',12'}=1.8 Hz) centered at δ 4.83 (H-12') and a triplet (2H) at δ 2.73 (H-4') characteristic of the lactone side chain in roridin L-2. However, unlike roridin L-2, 2 forms a triacetate. Furthermore, H-16 normally found at <u>ca</u>. δ 1.7 in trichothecenes is a two proton singlet at δ 4.05 in 2 (Table I) and a two proton singlet at δ 4.50 in the triacetate. Collectively, these data make secure the structure assignment given for 2.

Trichoverritone forms a diacetate which exhibits a five line resonance at δ 4.98: H-13', dq, J_{6',13'}=J_{13',14'}=6.5 Hz. Also, 16-hydroxyroridin L-2 forms a triacetate which exhibits a five line resonance at δ 5.00: H-13', dq, J_{6',13'}=H_{13',14'}=6.4 Hz. Based on similar ¹H NMR data for other trichoverroids, ⁵ both 2 and 3 have the same configurations at C-6' and C-13', i.e. the asymmetric centers at C-6' and C-13' are either both (S) or both

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Position	2 ^b	3°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	79_1	79.1
4 75.4 (6.08 dd) $[3.5, 8]$ 75.4 (5.97 dd) $[3.4]$ 5 49.1 48.9 6 44.8 43.3 7 20.9 (2.1 m) 28.0 (-2) 8 23.6 (2.1 m) 28.0 (-2) 9 143.3 140.6 10 119.0 (5.75 d) $[5.1]$ 118.5 (5.47 d) 11 66.5 66.9 66.9 67.9 (2.98 AB) $[4.0]$ 11 66.5 65.4 7.9 (2.98 \text{ AB}) $[4.0]$ (4.14 AB) $[12.5]$ 12 65.5 65.4 63.0 (4.14 \text{ AB}) $[12.5]$ 14 6.5 (0.86 s) 63.0 (4.14 \text{ AB}) $[12.5]$ 15 62.4 63.0 (4.14 \text{ AB}) $[12.5]$ 16 66.1 (4.05 s) 23.0 (1.72 s) 174.1 17 174.0 174.1 166.7 2' 16.8 (5.90 m) 116.7 131.3 (7.60 dd) $[11.6, 15.6]$ 3' 130.5 (7.61 \text{ dd})	Ĵα	36.1 (2.53 dd) [8, 15.4]	36.9 (2.59 dd) [7.8, 15]
549.148.9644.843.3720.9 (2.1 m)21.5 (~2)823.6 (2.1 m)28.0 (~2)9143.3140.610119.0 (5.75 d) [5.1]118.5 (5.47 d) [4.9]1166.566.91265.565.41347.9 (2.98 AB) [4.0]47.9 (2.98 AB) [4.0]146.5 (0.86 s)68. (0.82 s)1562.463.0 (4.14 AB) [12.5]1666.1 (4.05 s)23.0 (1.72 s)1'174.0174.12'116.8 (5.90 m)116.73'167.466.24'29.3 (2.73 t) [5.8]29.3 (2.71 t) [6.15'66.466.26'85.465.80 dd) [8.3, 15.6]11166.4138.6 (5.80 dd) [8.3, 15.6]12'73.6 (4.78 dd) [11.4, 11.4]142.8 (6.58 dd) [11.6, 11.6]13'69.869.514'18.5 (1.18 d) [6.4]165.61''13.3 (7.2.41 t) [6.1]5''69.96''9.814''19.5 (2.20 d) [1.2]	4	75.4 (6.08 dd) [3.5. 8]	75.4 (5.97dd) [3.4]
6 44.8 43.3 7 20.9 ($2.1 m$) 21.5 (-2) 8 23.6 ($2.1 m$) 21.5 (-2) 9 143.3 140.6 10 119.0 ($5.75 d$) [5.1] 118.5 ($5.47 d$) [4.9] 11 66.5 66.9 12 65.5 66.4 13 47.9 ($2.98 AB$) [4.0] 47.9 ($2.98 AB$) [4.0] 14 6.5 ($0.86 s$) 63.0 ($4.14 AB$) [12.5] 15 62.4 63.0 ($4.14 AB$) [12.5] 16 66.1 ($4.05 s$) $23.0 (1.72 s)$ $1'$ 174.0 174.1 $2'$ 116.8 ($5.90 m$) 116.7 $3'$ 167.4 85.6 $4'$ 29.3 ($2.73 t$) [5.8] 29.3 ($2.71 t$) [6.1 $5'$ 66.4 85.6 $7'$ 139.0 ($5.80 dd$) [$8.3, 15.6$] $131.3 (7.60 dd$) [$11.6, 11.6, 11.6$] $10'$ $118.8 (5.79)$ [11.4] $117.1 (5.76 dd)$ [$11.6, 11.6$] $10'$ $118.8 (5.79)$ [11.4] $117.1 (5.76 dd)$ [11.6] <t< td=""><td>5</td><td>49.1</td><td>48.9</td></t<>	5	49.1	48.9
720.9 (2.1 m)21.5 (-2)823.6 (2.1 m)28.0 (-2)9143.3140.610119.0 (5.75 d) [5.1]118.5 (5.47 d) [4.9]1166.566.91265.565.41347.9 (2.98 AB) [4.0]47.9 (2.98 AB) [4.0]146.5 (0.86 s)6.8 (0.82 s)1562.463.0 (4.14 AB) [12.5]1666.1 (4.05 s)23.0 (1.72 s)1'174.0174.12'116.8 (5.90 m)116.71'174.029.3 (2.71 t) [6.15'66.466.26'85.485.67'139.0 (5.80 dd) [8.3, 15.6]131.3 (7.60 dd) [11.6, 15.6]9'143.4 (6.62 dd) [11.4, 11.4]142.8 (6.58 dd) [11.6, 11.6]10'118.8 (5.79) [11.4]117.1 (5.76 d) [11.6]11'166.4165.812'73.6 (4.78 dd) [1.8, 16]; (4.88 dd) [1.8, 16]73.3 (4.79 d) [1.8]13'69.869.514'18.5 (1.18 d) [6.4]18.5 (1.14 d) [5.8]1''19.3 (5.80 m)157.03''4''80. (3.20 d) [1.2]	6	44.8	43.3
8 23.6 (2.1 m) 28.0 (~2) 9 143.3 140.6 10 119.0 (5.75 d) [5.1] 118.5 (5.47 d) [4.9] 11 66.5 66.9 12 65.5 65.4 13 47.9 (2.98 AB) [4.0] 47.9 (2.98 AB) [4.0] 14 6.5 (0.86 s) 6.8 (0.82 s) 15 62.4 63.0 (4.14 AB) [12.5] 16 66.1 (4.05 s) 23.0 (1.72 s) 1' 174.0 174.1 2' 116.8 (5.90 m) 116.7 3' 167.4 167.2 4' 29.3 (2.73 t) [5.8] 29.3 (2.71 t) [6.1 5' 66.4 65.6 6' 85.4 85.6 7' 139.0 (5.80 dd) [8.3, 15.6] 138.6 (5.80 dd) [8.3, 15.6] 8' 130.5 (7.61 dd) [11.4, 11.4] 142.8 (6.58 dd) [11.6, 11.6] 10' 118.8 (5.79) [11.4] 117.1 (5.76 d) [11.6] 11' 166.4 116.1 12' 73.6 (4.78 dd) [1.8, 16]; (4.88 dd) [1.8, 16] 73.3 (4.79 d) [1.8] 13' 69.8 69.5 14' 18.5 (1.18 d) [6.4	7	20.9 (2.1 m)	21.5 (~2)
9 143.3 140.6 10 119.0 (5.75 d) [5.1] 118.5 (5.47 d) [4.9]11 66.5 66.9 12 65.5 65.4 13 47.9 (2.98 AB) [4.0] 47.9 (2.98 AB) [4.0]14 6.5 (0.86 s) 6.8 (0.82 s)15 62.4 63.0 (4.14 AB) [12.5]16 66.1 (4.05 s) 23.0 (1.72 s)1' 174.0 174.1 2' 116.8 (5.90 m) 116.7 3' 167.4 167.2 4' 29.3 (2.73 t) [5.8] 29.3 (2.71 t) [6.15' 66.4 66.2 6' 85.4 85.6 7' 139.0 (5.80 dd) [8.3, 15.6] 138.6 (5.80 dd) [8.3, 15.6]8' 130.5 (7.61 dd) [11.4, 15.6] 131.3 (7.60 dd) [11.6, 15.6]9' 143.4 (6.62 dd) [11.4, 11.4] 142.8 (6.58 dd) [11.6, 11.6]10' 118.8 (5.79) [11.4] 117.1 (5.76 d) [11.6]11' 166.4 69.5 12' 73.6 (4.78 dd) [1.8, 16]; (4.88 dd) [1.8, 16] 73.3 (4.79 d) [1.8]13' 69.8 69.5 14' 18.5 (1.18 d) [6.4] 18.5 (1.14 d) [5.8]1''' 165.6 119.3 (5.80 m)1''' 43.7 (2.41 t) [6.1]5''' 69.9 1''' 99.9 9.9 99.9 9.9 99.9	8	23.6 (2.1 m)	28.0 (~2)
10 $119.0 (5.75 d) [5.1]$ $118.5 (5.47 d) [4.9]$ 11 66.5 66.9 12 65.5 65.4 13 $47.9 (2.98 AB) [4.0]$ $47.9 (2.98 AB) [4.0]$ 14 $6.5 (0.36 s)$ $63.0 (4.14 AB) [12.5]$ 15 62.4 $63.0 (4.14 AB) [12.5]$ 16 $66.1 (4.05 s)$ $23.0 (1.72 s)$ 1' 174.0 174.1 2' $116.8 (5.90 m)$ 116.7 3' 167.4 $29.3 (2.73 t) [5.8]$ 4' $29.3 (2.73 t) [5.8]$ $29.3 (2.71 t) [6.1$ 5' 66.4 66.2 6' 85.4 85.6 7' $139.0 (5.80 dd) [8.3, 15.6]$ $131.3 (7.60 dd) [11.6, 15.6]$ 8' $130.5 (7.61 dd) [11.4, 11.4]$ $142.8 (6.58 dd) [11.6, 11.6]$ 10' $118.8 (5.79) [11.4]$ $117.1 (5.76 d) [11.6]$ 11' 166.4 69.5 14' $18.5 (1.18 d) [6.4]$ $18.5 (1.14 d) [5.8]$ 1'' $70.6 (4.78 dd) [1.8, 16]; (4.88 dd) [1.8, 16]$ $73.3 (4.79 d) [1.8]$ 9'' $43.7 (2.41 t) [6.1]$ 57.0 4'' $49. (2.20 d) [1.2]$	9	143.3	140.6
11 66.5 66.9 12 65.5 65.4 13 47.9 (2.98 AB) [4.0] 47.9 (2.98 AB) [4.0]14 6.5 (0.86 s) 6.8 (0.82 s)15 62.4 63.0 (4.14 AB) [12.5]16 66.1 (4.05 s) 23.0 (1.72 s)1' 174.0 174.1 2' 116.8 (5.90 m) 116.7 3' 167.4 167.2 4' 29.3 (2.73 t) [5.8] 29.3 (2.71 t) [6.15' 66.4 85.6 7' 139.0 (5.80 dd) [8.3, 15.6] 138.6 (5.80 dd) [8.3, 15.6]8' 130.5 (7.61 dd) [11.4, 15.6] 131.3 (7.60 dd) [11.6, 15.6]9' 143.4 (6.62 dd) [11.4, 11.4] 142.8 (6.58 dd) [11.6, 11.6]10' 118.8 (5.79) [11.4] 117.1 (5.76 d) [11.6]11' 166.4 69.5 14' 18.5 (1.18 d) [6.4] 18.5 (1.14 d) [5.8]1'' 73.3 (4.79 d) [1.8]1'' 69.8 69.5 14'' 18.5 (1.18 d) [6.4] 165.6 1'' 19.3 (5.80 m)3'' 43.7 (2.41 t) [6.1]5'' 69.4 [19.3]	10	119.0 (5.75 d) [5.1]	118.5 (5.47 d) [4.9]
12 65.5 65.4 13 $47.9 (2.98 \text{ AB}) [4.0]$ $47.9 (2.98 \text{ AB}) [4.0]$ 14 $6.5 (0.86 \text{ s})$ $6.8 (0.82 \text{ s})$ 15 62.4 $63.0 (4.14 \text{ AB}) [12.5]$ 16 $66.1 (4.05 \text{ s})$ $23.0 (1.72 \text{ s})$ 1' 174.0 174.1 2' $116.8 (5.90 \text{ m})$ 116.7 3' 167.4 167.2 4' $29.3 (2.73 \text{ t}) [5.8]$ $29.3 (2.71 \text{ t}) [6.1$ 5' 66.4 66.2 6' 85.4 85.6 7' $139.0 (5.80 \text{ dd}) [8.3, 15.6]$ $138.6 (5.80 \text{ dd}) [8.3, 15.6]$ 8' $130.5 (7.61 \text{ dd}) [11.4, 15.6]$ $131.3 (7.60 \text{ dd}) [11.6, 15.6]$ 9' $143.4 (6.62 \text{ dd}) [11.4, 11.4]$ $142.8 (6.58 \text{ dd}) [11.6, 11.6]$ 10' $118.8 (5.79) [11.4]$ $117.1 (5.76 \text{ d}) [11.6]$ 11' 166.4 $73.3 (4.79 \text{ d}) [1.8]$ 12' $73.6 (4.78 \text{ dd}) [1.8, 16]; (4.88 \text{ dd}) [1.8, 16]$ $73.3 (4.79 \text{ d}) [1.8]$ 13' 69.8 1165.6 14' $18.5 (1.18 \text{ d}) [6.4]$ 157.0 4" $43.7 (2.41 \text{ t}) [6.1]$ 5" $49.9 (2.20 \text{ d}) [1.2]$	11	66.5	66.9
13 47.9 (2.98 AB) [4.0] 47.9 (2.98 AB) [4.0]14 6.5 (0.86 s) 6.8 (0.82 s)15 62.4 63.0 (4.14 AB) [12.5]16 66.1 (4.05 s) 23.0 (1.72 s)1' 174.0 174.1 2' 116.8 (5.90 m) 116.7 3' 167.4 167.2 4' 29.3 (2.73 t) [5.8] 29.3 (2.71 t) [6.15' 66.4 66.2 6' 85.4 85.6 7' 139.0 (5.80 dd) [8.3, 15.6] 131.3 (7.60 dd) [11.6, 15.6]9' 143.4 (6.62 dd) [11.4, 11.4] 142.8 (6.58 dd) [11.6, 11.6]10' 118.8 (5.79) [11.4] 117.1 (5.76 d) [11.6]11' 166.4 155.8 12' 73.6 (4.78 dd) [1.8, 16]; (4.88 dd) [1.8, 16] 73.3 (4.79 d) [1.8]13' 69.8 69.5 14' 18.5 (1.18 d) [6.4] 157.0 3'' 43.7 (2.41 t) [6.1]5'' 59.9 6'' $9(2.20 d)$ [1.2]	12	65.5	65.4
14 $6.5 (0.86 \text{ s})$ $6.8 (0.82 \text{ s})$ 15 62.4 $63.0 (4.14 \text{ AB}) [12.5]$ 16 $66.1 (4.05 \text{ s})$ $23.0 (1.72 \text{ s})$ 1' 174.0 174.1 2' $116.8 (5.90 \text{ m})$ 116.7 3' 167.4 167.2 4' $29.3 (2.73 \text{ t}) [5.8]$ $29.3 (2.71 \text{ t}) [6.1$ 5' 66.4 66.2 6' 85.4 85.6 7' $139.0 (5.80 \text{ dd}) [8.3, 15.6]$ $138.6 (5.80 \text{ dd}) [8.3, 15.6]$ 8' $130.5 (7.61 \text{ dd}) [11.4, 15.6]$ $131.3 (7.60 \text{ dd}) [11.6, 15.6]$ 9' $143.4 (6.62 \text{ dd}) [11.4, 11.4]$ $142.8 (6.58 \text{ dd}) [11.6, 11.6]$ 10' $118.8 (5.79) [11.4]$ $117.1 (5.76 \text{ d}) [11.6]$ 11' 166.4 69.5 12' $73.6 (4.78 \text{ dd}) [1.8, 16]; (4.88 \text{ dd}) [1.8, 16]$ $73.3 (4.79 \text{ d}) [1.8]$ 13' 69.8 69.5 14' $18.5 (1.18 \text{ d}) [6.4]$ $18.5 (1.14 \text{ d}) [5.8]$ 1'' 65.6 $19.3 (5.80 \text{ m})$ 3'' $43.7 (2.41 \text{ t}) [6.1]$ 5'' 59.9 6'' $89.4 (2.20 \text{ d}) [1.2]$	13	47.9 (2.98 AB) [4.0]	47.9 (2.98 AB) [4.0]
15 62.4 $63.0 (4.14 \text{ AB}) [12.5]$ 16 $66.1 (4.05 \text{ s})$ $23.0 (1.72 \text{ s})$ 1' 174.0 174.1 2' $116.8 (5.90 \text{ m})$ 116.7 3' 167.4 167.2 4' $29.3 (2.73 \text{ t}) [5.8]$ $29.3 (2.71 \text{ t}) [6.1$ 5' 66.4 66.2 6' 85.4 85.6 7' $139.0 (5.80 \text{ dd}) [8.3, 15.6]$ $138.6 (5.80 \text{ dd}) [8.3, 15.6]$ 8' $130.5 (7.61 \text{ dd}) [11.4, 15.6]$ $131.3 (7.60 \text{ dd}) [11.6, 15.6]$ 9' $143.4 (6.62 \text{ dd}) [11.4, 11.4]$ $142.8 (6.58 \text{ dd}) [11.6, 11.6]$ 10' $118.8 (5.79) [11.4]$ $117.1 (5.76 \text{ d}) [11.6]$ 11' 166.4 69.8 12' $73.6 (4.78 \text{ dd}) [1.8, 16]; (4.88 \text{ dd}) [1.8, 16]$ $73.3 (4.79 \text{ d}) [1.8]$ 13' 69.8 69.5 14' $18.5 (1.18 \text{ d}) [6.4]$ 165.6 1'' 167.0 $43.7 (2.41 \text{ t}) [6.1]$ 5'' $69.9 (2.20 \text{ d}) [1.2]$	14	6.5 (0.86 s)	6.8 (0.82 s)
16 $66.1 (4.05 s)$ $23.0 (1.72 s)$ 1' 174.0 174.1 2' $116.8 (5.90 m)$ 116.7 3' 167.4 167.2 4' $29.3 (2.73 t) [5.8]$ $29.3 (2.71 t) [6.1$ 5' 66.4 66.2 6' 85.4 85.6 7' $139.0 (5.80 dd) [8.3, 15.6]$ $138.6 (5.80 dd) [8.3, 15.6]$ 8' $130.5 (7.61 dd) [11.4, 15.6]$ $131.3 (7.60 dd) [11.6, 15.6]$ 9' $143.4 (6.62 dd) [11.4, 11.4]$ $142.8 (6.58 dd) [11.6, 11.6]$ 10' $118.8 (5.79) [11.4]$ $117.1 (5.76 d) [11.6]$ 11' 166.4 $73.3 (4.79 d) [1.8]$ 12' $73.6 (4.78 dd) [1.8, 16]; (4.88 dd) [1.8, 16]$ $73.3 (4.79 d) [1.8]$ 13' 69.8 $18.5 (1.18 d) [6.4]$ 165.6 1'' 165.6 $19.3 (5.80 m)$ 3'' 157.0 $41''$ 59.9 4'' $9. (2.20 d) [1.2]$	15	62.4	63.0 (4.14 AB) [12.5]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	66.1 (4.05 s)	23.0 (1.72 s)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1'	174.0	174.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2'	116.8 (5.90 m)	116.7
4' 29.3 (2.73 t) [5.8] 29.3 (2.71 t) [6.1 $5'$ 66.4 66.2 $6'$ 85.4 85.6 $7'$ 139.0 (5.80 dd) [8.3, 15.6] 138.6 (5.80 dd) [8.3, 15.6] $8'$ 130.5 (7.61 dd) [11.4, 15.6] 131.3 (7.60 dd) [11.6, 15.6] $9'$ 143.4 (6.62 dd) [11.4, 11.4] 142.8 (6.58 dd) [11.6, 11.6] $10'$ 118.8 (5.79) [11.4] 117.1 (5.76 d) [11.6] $10'$ 118.8 (5.79) [11.4] 117.1 (5.76 d) [11.6] $11'$ 166.4 165.8 $12'$ 73.6 (4.78 dd) [1.8, 16]; (4.88 dd) [1.8, 16] 73.3 (4.79 d) [1.8] $13'$ 69.8 69.5 $14'$ 18.5 (1.18 d) [6.4] 165.6 $2''$ 165.6 119.3 (5.80 m) $3''$ $4''$ 43.7 (2.41 t) [6.1] $5''$ 9.9 18.9 (2.20 d) [1.2]	3'	167.4	167.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4'	29.3 (2.73 t) [5.8]	29.3 (2.71 t) [6.1
6' 85.4 85.6 $7'$ 139.0 (5.80 dd) [8.3, 15.6] 138.6 (5.80 dd) [8.3, 15.6] $8'$ 130.5 (7.61 dd) [11.4, 15.6] 131.3 (7.60 dd) [11.6, 15.6] $9'$ 143.4 (6.62 dd) [11.4, 11.4] 142.8 (6.58 dd) [11.6, 11.6] $10'$ 118.8 (5.79) [11.4] 142.8 (6.58 dd) [11.6, 11.6] $11'$ 166.4 165.8 $12'$ 73.6 (4.78 dd) [1.8, 16]; (4.88 dd) [1.8, 16] 73.3 (4.79 d) [1.8] $13'$ 69.8 69.5 $14'$ 18.5 (1.18 d) [6.4] 165.6 $1''$ 165.6 19.3 (5.80 m) $3''$ $4''$ 18.5 (1.18 d) [6.4] 157.0 $4''$ 59.9 19.9 (2.20 d) [1.2]	5'	66.4	66.2
7' 139.0 (5.80 dd) [8.3, 15.6] 138.6 (5.80 dd) [8.3, 15.6] $8'$ 130.5 (7.61 dd) [11.4, 15.6] 131.3 (7.60 dd) [11.6, 15.6] $9'$ 143.4 (6.62 dd) [11.4, 11.4] 142.8 (6.58 dd) [11.6, 11.6] $10'$ 118.8 (5.79) [11.4] 142.8 (6.58 dd) [11.6, 11.6] $11'$ 166.4 165.8 $12'$ 73.6 (4.78 dd) [1.8, 16]; (4.88 dd) [1.8, 16] 73.3 (4.79 d) [1.8] $13'$ 69.8 69.5 $14'$ 18.5 (1.18 d) [6.4] 18.5 (1.14 d) [5.8] $1''$ 165.6 19.3 (5.80 m) $3''$ 4.77 (2.41 t) [6.1] $5''$ 9.9 (2.20 d) [1.2]	6'	85.4	85.6
8' 130.5 (7.61 dd) [11.4, 15.6] 131.3 (7.60 dd) [11.6, 15.6] $9'$ 143.4 (6.62 dd) [11.4, 11.4] 142.8 (6.58 dd) [11.6, 11.6] $10'$ 118.8 (5.79) [11.4] 117.1 (5.76 d) [11.6] $11'$ 166.4 165.8 $12'$ 73.6 (4.78 dd) [1.8, 16]; (4.88 dd) [1.8, 16] 73.3 (4.79 d) [1.8] $13'$ 69.8 69.5 $14'$ 18.5 (1.18 d) [6.4] 18.5 (1.14 d) [5.8] $1''$ 165.6 $2''$ 119.3 (5.80 m) $3''$ 43.7 (2.41 t) [6.1] $5''$ 9.9 $6''$ 19.9 (2.20 d) [1.2]	7'	139.0 (5.80 dd) [8.3, 15.6]	138.6 (5.80 dd) [8.3, 15.6]
9' 143.4 (6.52 dd) [11.4, 11.4] 142.8 (6.58 dd) [11.6, 11.6] 10' 118.8 (5.79) [11.4] 117.1 (5.76 d) [11.6] 11' 166.4 165.8 12' 73.6 (4.78 dd) [1.8, 16]; (4.88 dd) [1.8, 16] 73.3 (4.79 d) [1.8] 13' 69.8 69.5 14' 18.5 (1.18 d) [6.4] 165.6 2" 165.6 2" 165.6 3" 157.0 4" 59.9 6" $9.9 (2.20 d) [1.2]$	8.	130.5 (7.61 dd) [11.4, 15.6]	131.3 (7.60 dd) [11.6, 15.6]
10' 118.8 (5.79) [11.4] 117.1 (5.76 d) [11.6] $11'$ 166.4 165.8 $12'$ 73.6 (4.78 dd) [1.8, 16]; (4.88 dd) [1.8, 16] 73.3 (4.79 d) [1.8] $13'$ 69.8 69.5 $14'$ 18.5 (1.18 d) [6.4] 18.5 (1.14 d) [5.8] $1''$ 165.6 $2''$ 119.3 (5.80 m) $3''$ 43.7 (2.41 t) [6.1] $5''$ 59.9 $6''$ 18.9 (2.20 d) [1.2]	9'	143.4 (6.62 dd) [11.4, 11.4]	142.8 (0.58 dd) [11.0, 11.0]
11' 165.4 12' 73.6 (4.78 dd) [1.8, 16]; (4.88 dd) [1.8, 16] 73.3 (4.79 d) [1.8] 13' 69.8 14' 18.5 (1.18 d) [6.4] 18.5 (1.14 d) [5.8] 1" 165.6 2" 119.3 (5.80 m) 3" 43.7 (2.41 t) [6.1] 5" 59.9 6" 18.9 (2.20 d) [1.2]	10'	118.8 (5./9) [11.4]	11/.1 (5./6 d) [11.6]
12' 73.6 (4.78 dd) [1.8, 16]; (4.88 dd) [1.8, 16] 73.3 (4.79 d) [1.8] $13'$ 69.8 69.5 $14'$ 18.5 (1.18 d) [6.4] 18.5 (1.14 d) [5.8] $1"$ 165.6 $2"$ 119.3 (5.80 m) $3"$ 43.7 (2.41 t) [6.1] $5"$ 59.9 $6"$ 18.9 (1.22)	11.		105.8 73.2 (4.70 x) [1.0]
13° 69.8 69.5 14° 18.5 (1.18 d) [6.4] 18.5 (1.14 d) [5.8] $1"$ 165.6 $2"$ 119.3 (5.80 m) $3"$ 157.0 $4"$ 43.7 (2.41 t) [6.1] $5"$ 59.9 $6"$ $19.9 (2.20 d) [1.2]$	12	/3.6 (4./8 dd) [1.8, 16]; (4.88 dd) [1.8, 16]	/3.3 (4./9 0) [1.8]
14 18.5 (1.18 d) [0.4] 16.5 (1.14 d) [5.8] $1"$ 165.6 $2"$ 119.3 (5.80 m) $3"$ 157.0 $4"$ 43.7 (2.41 t) [6.1] $5"$ 59.9 $6"$ 19.9 (2.20 d) [1.2]	13'	69.8 10 F (1 10 H) FC A]	09.5 10 5 /1 14 4\ [5 9]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	18.5 (1.18 0) [0.4]	10.5 (1.14 U) [5.0]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1		100.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2		157.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3		107.0 12 7 (2 11 +) [6 1]
	4		43.7 (2.41 C/ [0.1] 50 0
	5		19 0 (2 20 4) [1 2]

Table 1. 13 C and 1 H NMR Data for 16-Hydroxyroridin L-2 (2) and Trichoverritone (3) a

^aSpectra recorded in CDCl₃ on an IBM WP-200SY spectrometer. The proton chemical shifts are in parentheses and the ^JH,H in brackets. ¹³C Chemical shift assignments were done by comparing proton decoupled spectra with spectra obtained in an INEPT experiment ⁸ and by comparison with the literature values for roridin L-2 ² and the trichoverrins. ⁵ ^bThe region of δ 3.5-4.0 in the proton spectrum is a complex pattern of overlapping signals of H's 2,11,15,5',6', and 13'. ^CThe region of δ 3.4-3.9 in the proton spectrum is a complex pattern of overlapping signals of H's 2,11,5',6',13', and 5". (R). It would be of interest to determine these stereochemistries in order to establish the relationship between 2 and 3 and trichoverrin A (5a) [which is C-6' (S), C-13' (S)] ⁵ and roridins E (4a) [which is C-6' (R), C-13' (R)]⁶, and isoE (4b) [which is C-6' (S), C-13' (S)]. ⁷

A liquid culture of <u>M. roridum</u> (strain 81-131) ³ was prepared by suspending spores of the fungus in 2 L of aqueous medium containing 40 g of sucrose and various inorganic and organic salts. After ten days, the culture was extracted (EtOAc) to give <u>ca</u>. 200 mg of resin which after extensive chromatography gave 90 mg of trichodermadienediols A and B, ⁵ 15 mg of trichoverritone (3), and 5 mg of roridin L-2 (1). Production of these metabolites is very sensitive to the degree of aeration.

<u>Acknowledgments</u>. We wish to thank Dr. James French of Warner-Lambert Co., Ann Arbor, Michigan, for supplying us with <u>M. roridum</u> strain CL-514 and a fraction from the extract of a large scale liquid culture of this organism. We thank Dr. A.R. Chase, Agricultural Research Center, Apopka, Florida, for providing us with <u>M. roridum</u> strain 81-131. Support for this work from the National Institutes of Health (Grant No. CA 25967) and the U.S. Army (Contract No. DMAD 17-82-C-2240) is gratefully acknowledged.

References

- (a) J.R. Bamburg and F.M. Strong in "Microbial Toxins," S. Kadis, A. Ciegler, and C.J. Ajl, eds.; Academic Press, New York, N.Y. Vol 7, p. 207. (b) J.R. Bamburg in "Mycotoxins and Other Fungal Related Food Problems," J.V. Rodricks, ed.; American Chemical Society, Washington D.C., 1976; Adv. Chem. Ser. No. 149, p. 144. (c) T.W. Doyle and W.T. Bradner in "Anticancer Agents Based on Natural Product Models," J.M. Cassidy and J.D. Douros, eds.; Academic Press, New York, N.Y., 1980, p.43. (d) Y. Ueno, <u>Adv. Nutr. Sci., 3</u>, 301 (1980). (e) C.W. Ong, <u>Heterocycles</u>, 19, 1685 (1982). (f) Ch. Tamm, <u>Fortschr. Chem. Org. Naturst.</u>, 31, 63 (1974). (g) B.B. Jarvis and E.P. Mazzola, Acc. Chem. Res., 15, 388 (1982).
- R.J. Bloem, T.A. Smitka, R.H. Bunge, J.C. French, and E.P. Mazzola, <u>Tetrahedron Lett.</u>, 24, 249 (1983).
- 3. Dr. A.R. Chase, Agricultural Research Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, Fl., unpublished results.
- C.J. Mirocha, S.V. Pathre, B. Schauerhamer, and C.M. Christensen, <u>Appl. Environ. Microbiol.</u>, 32, 553 (1976).
- B.B. Jarvis, G.P. Stahly, G. Pavanasasivam, J.O. Midiwo, T. DeSilva, C.E. Holmlund, E.P. Mazzola, and R.F. Geoghegan, Jr., <u>J. Org. Chem.</u>, <u>47</u>, 1117 (1982).
- 6. W.C. Still, Department of Chemistry, Columbia University, private communication.
- B.B. Jarvis, J.O. Midiwo, J.L. Flippen-Anderson, and E.P. Mazzola, <u>J. Natur. Prod.</u>, <u>47</u>, 440 (1982).
- 8. D.M. Doddrell and D.T. Peggy, J. Am. Chem. Soc., 102, 6388 (1980).

(Received in USA 19 April 1983)

3542